LLM Integration
OpenTranscribe integrates with multiple Large Language Model (LLM) providers for AI-powered features like summarization and speaker identification.
Supported Providers
- vLLM: Self-hosted, high-performance inference
- OpenAI: GPT-4, GPT-4o, and compatible models
- Anthropic: Claude 3.5, Claude 3, and Claude Opus 4.5 models
- Ollama: Local LLM server with many model options
- OpenRouter: Access to multiple models through one API
Key Features
AI Summarization
Generate BLUF (Bottom Line Up Front) summaries with:
- Executive summary
- Key discussion points
- Speaker analysis and talk time
- Action items with priorities
- Decisions and follow-ups
Multilingual Output (New in v0.2.0): Generate summaries in 12 different languages:
- English, Spanish, French, German
- Portuguese, Chinese, Japanese, Korean
- Italian, Russian, Arabic, Hindi
Configure in Settings → Transcription → LLM Output Language.
Speaker Identification
LLM-powered speaker name suggestions based on:
- Conversation context
- Speaking patterns
- Topic expertise
- Cross-video speaker matching
Model Auto-Discovery (New in v0.2.0)
Automatic model discovery for multiple providers:
Supported providers:
- vLLM: OpenAI-compatible /v1/models endpoint
- Ollama: Native /api/tags endpoint
- Anthropic: Native /v1/models endpoint
Features:
- Model selection dropdown populated dynamically
- No manual model name entry required
- Edit mode supports stored API keys (no need to re-enter)
- Works with any OpenAI-compatible API endpoint
Configuration
Set your preferred provider in .env:
# LLM Provider Selection
LLM_PROVIDER=vllm # or: openai, anthropic, ollama, openrouter
# Provider-specific settings
VLLM_API_URL=http://your-vllm-server:8000/v1
OPENAI_API_KEY=sk-xxxxx
ANTHROPIC_API_KEY=sk-ant-xxxxx
OLLAMA_API_URL=http://localhost:11434
Provider-Specific Guides
vLLM (Self-Hosted)
Best for privacy-first deployments:
# Example vLLM server setup
docker run --gpus all -p 8000:8000 vllm/vllm-openai:latest \
--model meta-llama/Llama-2-70b-chat-hf
Configure in .env:
LLM_PROVIDER=vllm
VLLM_API_URL=http://localhost:8000/v1
VLLM_MODEL_NAME=meta-llama/Llama-2-70b-chat-hf
OpenAI
Quick setup with commercial API:
LLM_PROVIDER=openai
OPENAI_API_KEY=sk-xxxxx
OPENAI_MODEL=gpt-4o
Anthropic
Claude models with automatic model discovery:
LLM_PROVIDER=anthropic
ANTHROPIC_API_KEY=sk-ant-xxxxx
ANTHROPIC_MODEL=claude-opus-4-5-20251101 # or claude-sonnet-4-20250514
Default model: claude-opus-4-5-20251101 (Claude Opus 4.5)
Ollama
Local LLM server:
# Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
# Pull a model
ollama pull llama3.2:latest
# Configure OpenTranscribe
LLM_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434
OLLAMA_MODEL=llama3.2:latest
Default model: llama3.2:latest
No LLM Mode
OpenTranscribe works without LLM configuration:
- Transcription: ✅ Full functionality
- Speaker Diarization: ✅ Full functionality
- AI Summarization: ❌ Requires LLM
- Speaker Identification Suggestions: ❌ Requires LLM
Leave LLM_PROVIDER empty to disable AI features.